
Peer-to-Peer Networking and Applications (2025) 18:0
https://doi.org/10.1007/s12083-024-01830-8

Parallel Byzantine fault tolerance consensus based on trusted
execution environments

Ran Wang1,5 · Fuqiang Ma2,3,4 · Sisui Tang1 · Hangning Zhang1 · Jie He1 · Zhiyuan Su4 · Xiaotong Zhang1 ·
Cheng Xu1,6

Received: 20 June 2024 / Accepted: 17 October 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Ensuring consistency and reliability in distributed systems is crucial for their adoption. Blockchain technology offers a
robust framework for these systems, characterized by decentralization, immutability, auditability, and traceability. In public
blockchains, consensus algorithms like Proof-of-Work (PoW) are foundational for securing transactions but are criticized for
high energy consumption and limited transaction throughput, making them less suitable for high-frequency environments.
In contrast, consortium blockchains rely on Byzantine Fault Tolerance (BFT) algorithms to address these issues. However,
existing Practical Byzantine Fault Tolerance (PBFT) protocols still face challenges in performance, scalability, and fault
tolerance. This paper introduces a novel Parallel Byzantine Fault Tolerance protocol, TEP-BFT, leveraging Trusted Execution
Environments. The TEP-BFT protocol utilizes aUnique Sequential IdentifierGenerator (USIG) based on Intel SoftwareGuard
Extensions (Intel SGX) to generate unique identifiers, thus ensuring the monotonicity, uniqueness, and order of messages.
This innovation reduces the requisite number of communication phases and replicas, substantially enhancing the efficiency
and fault tolerance of the consensus process. Moreover, the protocol implements parallel processing strategies both inter-
thread and intra-thread to augment the throughput of the blockchain system significantly. Our experimental and performance
analysis indicates that TEP-BFT achieves an optimal balance among performance, scalability, and fault tolerance, surpassing
other BFT protocol variants. This advancement positions TEP-BFT as a superior choice for blockchain systems in scenarios
requiring rapid and frequent transaction processing,marking a significant step forward in the evolution of blockchain consensus
mechanisms. Our code is made public available at: https://github.com/SICC-Group/TEP-BFT.git.

Keywords Byzantine fault tolerance · Consensus mechanisms · Trusted execution environments · Blockchain

1 Introduction

As distributed systems become increasingly prevalent in
today’s digital era, ensuring their consistency and reliability
has emerged as a crucial challenge. The swift advance-
ment of blockchain technologyprovides a reliable foundation
for distributed systems, characterized by decentralization,
immutability, auditability, and traceability [31]. However,
securing transactions on the blockchain to reach consensus
is challenging. For example, in blockchain systems, increas-
ing the number of nodes enhances decentralization and
improves resistance to attacks. However, this also raises the
complexity and communication costs of reaching the consen-

This article belongs to the Topical Collection:3 - Track on Blockchain
Guest Editor: Haojin Zhu

Extended author information available on the last page of the article

sus, reducing overall efficiency. Balancing system efficiency
with security becomes a significant challenge. Additionally,
addressing Byzantine Fault Tolerance, where some nodes
may act maliciously or fail, and preventing double-spending,
where digital assets could be reused in multiple transactions,
are critical. These challenges underscore the need for a robust
consensus mechanism to ensure reliable operation in com-
plex and dynamic environments.

The Proof ofWork (PoW) is a well-known consensus pro-
tocol for public blockchains, where consensus is achieved
through computational work required to solve cryptographic
puzzles, ensuring that all participating nodes agree on the
valid state of the ledger. Bitcoin’s blockchain relies on the
PoW mechanism to ensure transactions are executed in the
correct order [10]. Similarly, Proof of Stake (PoS), which has
gained prominence after Ethereum’s transition from PoW to
PoS in 2022 [14], is another consensus mechanism widely
used in public blockchains. While PoS addresses some of the

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-024-01830-8&domain=pdf
https://github.com/SICC-Group/TEP-BFT.git

 0 Page 2 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

energy inefficiencies of PoW, it introduces challenges such
as the need for robust economic incentives and potential cen-
tralization risks due to stake accumulation.

However, the consensus requirements in consortium
blockchains (or permissioned blockchains) differ signif-
icantly from those in public blockchains [32]. Consor-
tium blockchains are designed for environments with pre-
approved participants, where trust and accountability are
often established among the nodes. In such scenarios, PoW
and PoS protocols are not well-suited due to their ineffi-
ciencies and reliance on economic incentives, which are
unnecessary in permissioned settings. Instead, Byzantine
Fault Tolerance (BFT) protocols, which are specifically
designed to handle fault tolerance andmalicious nodeswithin
a smaller, trusted network, have become the preferred con-
sensus mechanism for consortium blockchains [22].

BFT protocols offer higher efficiency and lower latency
compared to PoWand PoS for consortium blockchains, mak-
ing them ideal for applications in sectors such as finance and
industrial IoT, where frequent transactions and high through-
put are essential [13, 21, 34]. While BFT protocols have
long been fundamental to distributed systems [2, 3, 6, 17,
18], recent research has focused on optimizing these pro-
tocols for blockchain use cases, particularly in consortium
settings. These optimizations are critical in enhancing the
security and reliability of blockchain systems by preventing
malicious nodes from disrupting the consensus process. For
example, IBM’s Hyperledger Fabric blockchain [11] and the
open-source consortium FISCO BCOS blockchain [1] rely
on Practical Byzantine Fault Tolerance (PBFT) [3] to achieve
consensus, showcasing the practical application of these opti-
mized BFT protocols in consortium blockchains.

Taking the PBFT protocol as an example, PBFT achieves
higher throughput than Bitcoin’s consensus layer [30], it
cannot match the transaction volume of existing payment
systems [16]. Moreover, PBFT requires 3f+1 replicas, which
must be diverse (different operating systems, software) to tol-
erate attacks and intrusions, thus increasing the extra costs
(hardware, software development, management, etc.) asso-
ciated with more replicas [9, 27]. Additionally, PBFT is
only scalable to a limited number of nodes as it requires
the exchange of O(n2) messages among n servers to reach
consensus [3]. Therefore, enhancing the scalability and
performance of BFT protocols, as well as reducing the con-
figuration costs of replicas, is crucial for their practical
deployment in existing industrial blockchain solutions.

To address the issueswith traditionalBFTprotocols,many
improved BFT protocols have been proposed and studied in
recent years [15, 18, 23, 29]. For example, the FastBFT pro-
tocol proposed by Liu et al. [23] balances computational and
communication loads by arranging nodes in a tree topol-
ogy, facilitating inter-server communication and message

aggregation at the tree’s edges. FastBFT adopts an optimistic
BFT paradigm [23], requiring only a portion of active nodes
to participate in the consensus. However, FastBFT’s oper-
ation relies on a relatively stable cluster environment, as
malicious nodes can intentionally trigger member replace-
ment in the tree topology communication. Most existing
research attempts to improve consensus throughput and
latency by reducing communication phases or adopting
asynchronous protocols but fails to organically combine
consensus communication phases, intra-thread asynchrony,
and inter-thread asynchrony [23, 33]. Considering the above
limitations, we introduce a more efficient and flexible con-
sensus protocol that not only reduces communication phases
through trusted counters but also supports parallel operations
within and between consensus threads.

This paper proposes a novel Parallel Byzantine Fault Tol-
erance protocol based on Trusted Execution Environments
(TEP-BFT) aimed at addressing the issues present in exist-
ing research. In our protocol, to enhance security and improve
consensus efficiency, the TEP-BFT protocol leverages Intel
SGX’s Trusted Execution Environment to secure the confi-
dentiality and integrity of messages broadcasted by nodes,
preventing the transmission of erroneous message packets
and thereby reducing one consensus communication phase.
Additionally, TEP-BFT has designed multi-tiered parallel
processing operations, further enhancing the throughput of
the BFT algorithm and reducing latency. This improvement
is particularly evident in scenarios requiring high-frequency
transactions, as demonstrated by our performance evaluations.
For example, in an Industrial IoT setting, where devices con-
stantly generate data that needs to be validated and recorded
on a blockchain, the TEP-BFT protocol excels due to its ability
to process multiple consensus operations in parallel. Specif-
ically, the main contributions are summarized as follows:

1. We propose a new Byzantine Fault Tolerance consen-
sus protocol, TEP-BFT, that fully utilizes Intel SGX-
based Unique Sequential Identifier Generator (USIG) to
generate unique identifiers, ensuring the monotonicity,
uniqueness, and orderliness of messages. This reduction
in communication phases during the consensus process
enhances consensus efficiency. Additionally, TEP-BFT
only requires the participation of 2 f + 1 nodes in the
consensus process towithstand attacks from f Byzantine
nodes, effectively saving the system’s cost of tolerating
intrusions.

2. TEP-BFT introduces multi-level parallel processing, not
only supporting parallel processing between transaction
packaging and consensus threads but also within consen-
sus threads themselves. This includes parallel operations
within the block batch parallel production phase and
between the block pipeline execution phase. Multi-level

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 3 of 24 0

parallel processing further increases the blockchain sys-
tem’s throughput.

3. To validate the enhanced performance of the optimized
consensus protocol, we conducted practical deployment
tests on physical machines. Experiment results indicate
that TEP-BFT surpasses other PBFT protocol variants
in performance, scalability, and fault tolerance. This
confirms the effectiveness of TEP-BFT in real-world
scenarios, demonstrating its superior operational capa-
bilities.

The structure of this paper is as follows: Section 2 details
existing Byzantine Fault Tolerance consensus protocols and
their limitations. Section 3 introduces the framework of the
TEP-BFT protocol. Section 4 describes the design and work-
ingmechanismof theTEP-BFTprotocol, including theUSIG
service based on Intel SGX, the normal operation process,
and view switching. Section 5 demonstrates the security and
liveliness of the TEP-BFT protocol. Section 6 presents the
performance advantages of TEP-BFT through experiments
and performance analysis. Finally, Section 7 summarizes the
main contributions of this paper and future research direc-
tions.

2 Preliminary

2.1 Byzantine consensus

As the application demand for blockchain technology con-
tinuously increases, consensus mechanisms have become a
focal point of research in both the academic and industrial
sectors. This has led to a renewed exploration of effective
Byzantine consensus solutions. Themain idea behindByzan-
tine consensus protocols is that the system can continue to
operate correctly even if someof its components behavemali-
ciously [29]. Byzantine consensus protocols typically require
3 f + 1 nodes to tolerate f Byzantine (or faulty) nodes. Their
fundamental concept is that the benign nodes can overcome
Byzantine (or faulty) ones through a series of votes [35].

One of the well-known BFT consensus protocols is the
PBFT protocol [3]. The core concepts in the PBFT protocol

include three parts: View, Nodes, and Roles (Client, Primary,
Replica), as shown in Fig. 1. The view represents the current
global state of the system. The PBFT protocol also accom-
modates the aforementioned capability to tolerate fmalicious
nodes, with a total node count of 3 f + 1. The process of the
protocol is primarily divided into five phases: Request, Pre-
prepare, Prepare, Commit, and Reply. Following a client’s
request, the primary node assigns a sequence number to the
request and sends the message to replica nodes during the
Pre-prepare phase. If the nodes agree with the Pre-prepare
message, they send their messages to other nodes during the
Prepare phase. Each node checks the correctness of the mes-
sage and the number of Prepare messages it has received (at
least 2 f). After completing the Prepare phase, nodes send
confirmation messages to other nodes. Nodes verify the data
and correctness of the confirmation messages received and
send a reply message to the client. If the client receives more
than f +1 identical replymessages, the request is considered
complete; otherwise, a new request is initiated.

2.2 Enhancing Byzantine fault tolerance

In traditional PBFT, consistency has been associated with
low efficiency and high costs. Consequently, some research
efforts have sought to reduce the number of nodes and com-
munication phases to improve the performance of consensus.
We categorize and summarize the existing work as shown in
Table 1. These research works can be categorized into four
types:

1. Speculative protocols: Kotla et al. proposed Zyzzyva
[18], which utilizes speculation to enhance performance.
Unlike traditional PBFT, replicas in Zyzzyva execute
client requests in the order proposed by the primary node,
without the need for any explicit consensus protocol.
However, under normal operating conditions, Zyzzyva
can reduce the overhead of state machine replication to
nearly optimal levels. However, once the primary node
makes an error, it must switch to the PBFT view change
process, which does not offer a clear advantage against
attacks from Byzantine nodes.

Fig. 1 The protocol process of
traditional PBFT consensus. It is
consist of four phases:
pre-prepare, prepare, commit,
and reply. Assuming there are f
Byzantine nodes, participation
from 3 f + 1 nodes is necessary
to maintain liveness. Among
these, Server3 represents a
Byzantine or faulty node and
does not participate in the
consensus process

123

 0 Page 4 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

Table 1 Comparison of BFT protocols

Protocol Type Protocol Key Features Strengths Limitations

Speculative Zyzzyva
(Kotla et al.)

Speculative execution, relies on
primary node

Reduces overhead of state
machine replication, nearly
optimal performance under
normal conditions

Reverts to PBFT view change
process upon primary node
error, lacks clear advantage
against Byzantine attacks

Optimistic ReBFT (Distler et al.) Resource-efficient,
passive replica updates

Subset of replicas run consen-
sus protocol, improved resource
efficiency

Efficiency significantly reduced
under malicious attacks, similar
trade-offs as speculative proto-
cols

Asynchronous HotStuff (Yin et al.) Linear leader changes, CPU
pipelining, O(n) complexity

Parallel processing, improved
scalability, lower communica-
tion complexity

Three rounds of interaction
before commitment, adds com-
munication delay

Asynchronous HoneyBadgerBFT
(Miller et al.)

No specific primary node,
blocks prevent duplication

Higher efficiency through block
proposals, fault tolerance

High latency, especially over
wide-area networks, delays can
exceed one minute

Hardware
Security

MinBFT
(Veronese et al.)

Trusted counter for sequence
numbers, tamper-resistant

Reduces communication phases
from three to two, TEE guaran-
tees monotonicity

Requires separate TEE counter,
lacks trustworthy authentication
mechanism between nodes

Hardware
Security

MinZyzzyva
(Veronese et al.)

Uses TEE to reduce repli-
cas, maintains communication
phases

Reduces replica count, main-
tains Zyzzyva’s performance
benefits

Similar limitations as MinBFT,
reliance on TEE counter

Hardware
Security

CheapBFT
(Kapitza et al.)

Optimistic protocol with TEE,
transitional protocol for faults

f +1 active replicas for consen-
sus, efficient in fault-free scenar-
ios

Complex transition between
consensus protocols, increased
complexity of BFT program-
ming model

2. Optimistic protocols: Distler et al. [7] introduced a
resource-efficient BFT (ReBFT) replication architecture.
Under normal operating conditions, only a subset of repli-
cas needs to run the consensus protocol, with others
passively updating their state and only actively partici-
pating if the consensus protocol fails. BFT protocols that
follow this message pattern are termed optimistic BFT.
However, this improved method shares the same draw-
backs as speculative approaches, trading off security for
efficiency. Once there is an attack bymalicious nodes, the
efficiency of this method will be significantly reduced.

3. Asynchronous protocols: The main contribution of Hot-
Stuff, proposedbyYin et al. [33], is the implementation of
linear leader changes. Using the concept of CPU pipelin-
ing, it designs the three communication phases to be
identical in message sending and receiving, allowing for
parallel processing of different communication phases
for multiple transactions. This mechanism reduces the
communication complexity of the BFT protocol to O(n),
improving scalability. However, proposals in this proto-
col require three rounds of interaction before they can be
committed, adding extra communication delay.
Based on the above challenges, Miller et al. [26] pro-
posed HoneyBadgerBFT, an asynchronous consensus
protocol devoid of a specific primary node. To enhance
efficiency, nodes package a subset of transactions into
proposal blocks to prevent duplication. However, due

to the iterative nature of asynchronous BFT consensus
mechanisms, achieving a final consensus result incurs
higher latency, particularly noticeable over wide-area
networks, where delays can exceed one minute in cer-
tain scenarios.

4. protocols Based on Hardware Security Mechanisms:
Hardware security mechanisms have been widely inte-
grated into general computing platforms [8]. Trusted
Execution Environments (TEEs) are prevalent on mobile
platforms, and newer TEEs, such as Intel’s SGX [12,
25], offer protected memory and isolated execution, pre-
venting standard operating systems or applications from
controlling or observing the data processed within. In
essence, TEEs can crash but not exhibit Byzantine faults.

Several studies have explored using hardware security to
reduce the number of replicas and/or communication phases
in BFT protocols [4, 5, 15, 19, 28, 29]. For instance,MinBFT
[29] utilizes a trusted counter within the primary node to
assign sequence numbers to client requests. This tamper-
resistant component does more than just assign a number;
it generates a signed certificate that explicitly associates the
number with a specific message, and not any other, leverag-
ing the TEE’s guarantee of counter monotonicity to prevent
assigning the same counter value to different messages. Con-
sequently, the communication phases from three to two.
Similarly, MinZyzzyva uses TEEs to decrease the number

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 5 of 24 0

of replicas required in Zyzzyva, maintaining the same num-
ber of communication phases [29].

However, both protocols necessitate maintaining a sepa-
rate counter within the TEE. Moreover, the USIG service,
based on TPM, offers a simple implementation but lacks a
trustworthy authenticationmechanism among nodes. Cheap-
BFT [15] employs TEEs within an optimistic BFT protocol
framework. In fault-free scenarios, CheapBFT only needs
f + 1 active replicas to achieve consensus and execute
client requests. Upon detecting suspicious faults, CheapBFT
triggers a transitional protocol to activate passive replicas,
switching to MinBFT. Nevertheless, CheapBFT involves
transitioning between three distinct consensus protocols,
increasing the complexity of the BFT programming model.

ForByzantine fault tolerance protocols, a common latency
metric is the number of communication steps required under
optimal conditions-without faults and with sufficient system
synchronization to avoid primary node changes. MinBFT
and MinZyzzyva are highly efficient under this metric, oper-
ating with the minimum known communication steps for
non-speculative and speculative protocols, respectively four
[24] and three steps [18]. However, in cases of node fail-
ures or Byzantine behaviors, these protocols may have to
roll back some executions, thereby complicating the pro-
grammingmodel and incurring additional computational and
communication costs.

3 System framework

As shown in Fig. 2, the TEP-BFT protocol incorporates
two-stage parallel processing, and each Consensus thread

includes a three-phase communication. The following pro-
vides an explanation of the nodes, threads, processes, and
phases within the TEP-BFT framework:

Nodes The consensus framework mainly comprises three
types of nodes: clients, primary nodes, and replica nodes.
Clients initiate requests, eachpossessing auniquepair of pub-
lic and private keys. The private key is used to sign requests.
Primary nodes receive requests from clients, sequence them,
and utilize a USIG service based on SGX to generate a
unique identifier (UI) for eachmessage request. For a detailed
description of the implementation method of USIG based on
Intel SGX, please see Section IV-A. Subsequently, they for-
ward these sequenced messages to replica servers and return
the results to the clients. Replica nodes receive messages
from the primary node, execute the verified operations, and
send back the results to the clients. Both primary and replica
nodes generate a key pair within a trusted execution environ-
ment during system initialization. The private key is securely
stored and used within this environment, inaccessible to any
external entities, while the public keys are publicly available
for verification.

Threads Consensus on a block primarily involves two pro-
cesses: transaction packaging and consensus. Therefore, a
consensus process is composed of the Seal and Consensus
thread. The Seal thread is responsible for retrieving transac-
tions from the transaction pool and packaging them based on
the highest block on the node, thereby generating newblocks.
The newblocks are then handed over to theConsensus thread.
The Consensus thread is tasked with receiving new blocks,
either locally or through the network, and completing the
consensus process based on the received messages, even-

Fig. 2 TEP-BFT is structured into three distinct processes, facilitating multiple client interactions and transaction consensus simultaneously

123

 0 Page 6 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

tually writing the new blocks that reached consensus into
the blockchain. Once a block is added to the blockchain,
the transactions it contains are removed from the transac-
tion pool. Since these two threads require non-conflicting
resources, they operate independently and can process in
parallel. Assuming the Seal thread requires time s and the
Consensus thread c, the parallel processing can save time
equal to (n − 1) ∗ s after n rounds of consensus.

Processes Within the blockchain system, the Consensus
is divided into three consensus processes: client request,
batch block parallel generation, and block pipeline exe-
cution. These processes can execute in parallel, allowing
multiple blocks to be consensused simultaneously. Both
batch block generation and block pipeline execution support
parallel consensus on multiple blocks, thereby enhancing
the blockchain’s throughput. In process 1©, multiple clients
can concurrently submit transaction consensus requests,
referred to as Request packets. The primary node aggre-
gates transactions from the transaction pool and organizes
them sequentially. This operation is managed by the Seal
thread, which is tasked with the systematic packaging of
transactions. The Consensus thread encompasses processes
2© and 3©, which are executed in parallel. In process 2©,
block generation occurs concurrently through the simulta-
neous broadcasting of prepare and commit messages. This
parallel processing enhances the efficiency of the consen-
sus mechanism. Meanwhile, in process 3©, the consensus
engine consistently retrieves unexecuted blocks from the
block queue, processes them, and performs pipeline vali-
dation of the results. This process ensures that blocks are
executed in a correct and timely manner. Upon successful
validation, the results are disseminated back to the clients
via Reply messages. This structured approach allows the
TEP-BFT protocol to efficiently handlemultiple transactions
and consensus requests concurrently, thereby optimizing
throughput and reducing latency within the network.

Phases Each Consensus thread completes its task through
four phases: request, prepare, commit, and reply. The primary
node determines the order of client requests and forwards
them to the replica nodes. Then, all nodes execute a two-
phase (prepare/commit) protocol to reach an agreement on
the order of requests. Subsequently, each node processes
the requests and sends responses to the respective clients.
A client accepts the result only after receiving at least f + 1
consistent replies. In this consensus protocol, identifiers are
generated by the USIG service provided by an SGX-based
trusted component, ensuring that an identifier can be assigned
to only one message request, and that these identifiers are
monotonic, unique, and ordered. Replica nodes need only
verify the message’s signature and the integrity of its con-
tent, without the need to compare the content of the same

identifier’s messages received by other nodes. Consequently,
TEP-BFT simplifies the prepare phase of the traditional
PBFT protocol. In terms of the number of replicas, faulty
nodes can decide not to send messages or to send corrupted
ones but cannot send two different messages with the same
UI and correct certificate. Thus, TEP-BFT requires the par-
ticipation of only 2 f + 1 nodes in the consensus workflow
to withstand f Byzantine nodes.

4 TEP-BFT protocol

This section primarily explains the implementation princi-
ples and specific procedural steps of TEP-BFT. Firstly, we
discuss the core functionalities of USIG implemented based
on SGX. SGX provides a secure and isolated area for USIG
operations, ensuring the confidentiality and integrity ofUSIG
executions. The application of USIG ensures that each mes-
sage sequence number corresponds to only one message,
thereby maintaining the monotonicity, uniqueness, and order
of messages. Additionally, the TEP-BFT mechanism based
onUSIG converts the tolerance of f Byzantine nodes into the
tolerance of f faulty nodes, thus requiring only 2 f +1 nodes
to participate in the consensus process to withstand attacks
from f Byzantine nodes. Subsequently, we apply USIG
based on Intel SGX to the TEP-BFT protocol, explaining
both the normal operational flow of the TEP-BFT protocol
and the view change process when nodes fail.

4.1 The SGX-USIG

In this paper, we propose the SGX-USIG, a Unique Sequen-
tial Identifier Generator (USIG) service based on Intel
Software Guard Extensions (SGX). The USIG has tradition-
ally been implemented as a service based on the Trusted
PlatformModule (TPM). This implementation leverages the
capabilities of TPM, utilizing a private Attestation Identity
Key pair (AIK) to sign data, thereby ensuring the security
and integrity of the USIG service. Our SGX-USIG, ser-
vice shares a similar structure with the previous TPM-based
implementation but offers enhanced security and remote
attestation capabilities. However, SGX provides a secure iso-
lated area for USIG operations, ensuring the confidentiality
and integrity of these operations, even in the presence of com-
promised servers. Here is an overview work mechanism of
our proposed SGX-USIG service:

Initialization of SGX enclave The core component of the
SGX-based USIG service is located within a secure enclave
created by Intel SGX. This enclave is tamper-resistant and
isolated from the rest of the system, ensuring the security of
USIG operations. Firstly, Establish a secure enclave using

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 7 of 24 0

Intel SGX, which serves as the isolated execution environ-
ment for the USIG service. Then, deploy the USIG service
softwarewithin the enclave. This software should include the
necessary cryptographic libraries for digital signature gener-
ation.

The choice of monotonic counter The blockchain height
h is used to increment the monotonic counter, recorded
as U I .h, eliminating the need to create and maintain a
separate counter. This approach saves storage and compu-
tational overhead. Using blockchain height as the monotonic
counter offers benefits like immutability, decentralization,
synchrony, temporality, transparency, and auditability. These
properties make blockchain height a reliable and secure way
to implement a monotonic counter, especially in environ-
ments requiring high verifiability and trustworthiness.

USIG service functions The interface of the service has two
functions:

• createU I (m): This functiongenerates aUSIGcertificate
containing a unique identifier (UI) and proves that the
UI was created for a given message m within the SGX
Enclave, signed by the attestation key private key during
the remote attestation process. The unique identifier is a
reading of the monotonic counter, which is incremented
with each call to createUI.

• veri f yU I (PK ,U I ,m): The function is responsible for
verifying the validity of the unique identifier U I for a
given message m, utilizing Intel’s remote attestation ser-
vice to obtain the attestation key public key for certificate
validation. It checks if the USIG certificate matches the
message and other associated data in U I .

Remote authentication SGX’s hardware-based remote aut-
hentication allows secure communication, ensuring requests
from other servers are legitimate and unaltered. The com-
munication’s security is protected by mechanisms provided
by SGX. Remote servers can establish a communication ses-
sion with the USIG isolated area. During this session, SGX
executes an authentication protocol to verify the requesting
source server. Only servers that pass verification can com-
municate with the USIG isolated area.

Implementation of USIG-Sign The USIG-Sign certificate
includes a digital signature obtained using the message and
the private key within the isolated area. When createUI(m) is
called, the message is signed using the private key with the
ECDSA algorithm inside the USIG isolated area, generating
a digital signature. The private key is protected by the enclave
isolation provided by SGX. Compared to TPM, SGX offers
a more rigorous and comprehensive security approach, par-
ticularly suitable for applications needing to protect sensitive
data and private keys. It not only isolates sensitive operations

but also providesmechanisms to resist various attacks, ensur-
ing the confidentiality and integrity of data. This ensures a
high level of security, even in compromised environments.

Replication and multi-instance support In scenarios where
multiple applications require BFT replication on the same set
of servers, multiple instances of SGX-based USIG services
can be deployed on each machine. This flexibility allows for
efficient utilization of hardware resources.

Transitioning from TPM-based USIG services to Intel
SGX-based USIG services with remote attestation signifi-
cantly improves security and isolation. The USIG isolated
area in SGX ensures the confidentiality and integrity of
the service, making it a reliable choice in modern server
environments that require tamper-proof identifier generation
services. Furthermore, multi-instance support makes it suit-
able for various replication scenarios.

4.2 Client request process

A client initiates an operation, denoted as op, by sending
a message 〈Request, c, seq, op, sigc〉 to all servers. Here, c
represents the client ID, seq is the request identifier, and sigc
is the signature of the client on the sent message.

Then, each node stores the latest request seq sent by the
client in a vector Vseq. Nodes discard requests where seq is
less than the request identifier in the latestmessage, to prevent
executing the same request twice and any requests received
while processing the previous one. Requests are signed using
the client’s private key. Requests with an invalid signature
sigc are simply discarded. After sending a request, the client
waits for Reply messages Replyi = 〈Reply, S j , seq, rst ji 〉
withmatching results rst ji from f +1 different nodes, where
i represents the block number, and S j represents the primary
and replica node ID. This ensures that at least one reply is
from a benign server. If the client does not receive enough
replies within the interval read by its local clock, it resends
the request. If the request has already been processed, the
nodes resend the cached reply.

4.3 Batch block parallel generation process

In the Seal thread, the primary node packages transactions
from the transaction pool into multiple blocks. In the batch
block parallel generation phase of the Consensus thread,
nodes concurrently consensus the packaged blocks to gener-
ate sorted, unexecuted blocks. Let the current block height of
the blockchain be h. The protocol for this stage is shown as
Algorithm 1, and the specific operation process is as follows:

1. The primary node retrieves several packaged blocks from
the transaction pool, denoted as Blocks=[Block1,Block2,
· · ·,Blocki , · · ·,BlockBlockLimit], and places these blocks

123

 0 Page 8 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

in thePreparemessagepacket, producingPreMessages=
[Prepare1,Prepare2, · · ·,Preparei , · · ·,PrepareBlockLimit].
Each Prepare message packet includes the message
type, view information, primary node’s id, the pack-
aged block, and a certificate generated by the primary
node for the Prepare message, that is Preparei =
〈Prepare, v, Sp, Blocki ,U Ipi 〉. U Ipi is a unique iden-
tifier generated by the createUI function, so no two
messages can have the same identifier. BlockLimit is
a parameter that limits the number of blocks that can
be concurrently consensed, ensuring the stability of the
blockchain system. (See lines 5-9 of Algorithm 1)

2. The primary node broadcasts the multiple Prepare mes-
sage packets simultaneously to all other replica nodes.
After receiving aPreparemessage packet Preparei , other
replica nodes use verifyUI to check the correctness of
U I i . (See lines 10-15 of Algorithm 1) If the verification
is successful, they continue to check the following:

• Whether the Prepare message packet has already
been received locally.

• v is the current view number and the sender is indeed
the primary node of the current view (view%n).

• The signature of the client in message m is correct;
• The replica node has already accepted the request
Blocki−1, where U I pi−1 .h = U I pi .h − 1. That is,
all corresponding requests smaller than UIi .h have
been accepted and executed.

• The validity of the message packet index i must be
greater than the current blockchain height h and less
than h + BlockLimit.

3. After a replica node successfully verifies a Preparemes-
sage packet, it adds the packet to its local cache and
broadcasts Commiti = 〈Commit, v, Sr j , Sp, Blocki ,
U I pi ,U Ir ji 〉 to all other nodes. Here, Commit is the
message type, v is the current view, Sr j is the ID of the
replica node, Blocki is the packaged block, andU Ir ji is
the certificate generated by the replica node for the Com-
mit message. Both Prepare and Commit messages have
unique identifiersU I generated by the createUI function,
ensuring that no two messages share the same identifier.
Servers use the verifyUI function to check the validity
of identifiers received in messages. (See lines 16-23 of
Algorithm 1)

4. When other nodes receive a Commit message packet
Commiti , they verify its validity. In addition to the
five steps of Prepare message verification, this includes
checking whether the node has received f + 1 valid
Commit messages for Blocki . If a replica node does
not receive a Prepare message from the primary node
but receives a valid Commit message, it also broadcasts
the corresponding Commit message. This is because the

Commit message includes the primary node’s certificate
U I pi , proving that the corresponding Prepare message
is problem-free. (See lines 26-30 of Algorithm 1)

5. Once the Commit message packet Commiti is verified,
the node adds it to the local cache. When the node col-
lects f +1Commitmessage packets, it retrieves the block
Blocki from the preprocessed message packets and com-
mits it to storage. (See lines 31-34 of Algorithm 1)

Algorithm 1 Batch parallel generation of blocks.
1: Input: BlockLimit BL , Blocks bs
2: Output: BLQueue Q
3: upon obtainment of bs at Sp do
4: // The primary node retrieves blocks from the transaction pool
5: while i ≤ BL
6: // Create a unique identifier for each block using CreateUI func-

tion
7: U Ipi = CreateUI(bs[i])
8: // Generate the Prepare message for each block
9: PrepareMessage = CreatePrepareMessage(v, Sp, bs[i],U Ipi)
10: // Broadcast the Prepare message to all replica nodes
11: BroadcastPrepareMessage(PrepareMessage)
12: end while
13: upon reception of < PrepareMessage > at Sr do
14: // Verify that the Prepare message has not been received before
15: if NotReceivedPrepareMessage(v, Sp,U Ipi)
16: // Validate the Prepare message’s contents and signatures
17: if VerifyPrepareMessage(v, Sp, bs[i],U Ipi)
18: // Add the valid Prepare message to the local cache
19: AddToLocalCache(PrepareMessage)
20: // Create a Commit message upon successful validation
21: CommitMessage =CreateCommitMessage(v, Sr , Sp, bs[i],

U Ipi ,U Ir ji)
22: // Broadcast the Commit message to all nodes
23: BroadcastCommitMessage(CommitMessage)
24: end if
25: end if
26: upon reception of f + 1 < CommitMessage > at Sp and Sr do
27: // Verify that the Commit message has not been received before
28: if NotReceivedCommitMessage(v, Sr , Sp,U Ipi ,U Ir ji)
29: // Validate the Commit message’s contents and signatures
30: if VerifyCommitMessage(v, Sr , Sp, bs[i],U Ipi ,U Ir ji)
31: // Add the valid Commit message to the local cache
32: AddToLocalCache(CommitMessage)
33: // Submit the block to storage in the Q
34: CommitBlockToStorage(bs[i])
35: end if
36: end if

For all the preprocessed message packets generated in
this stage, the procedure is repeated from steps (2) to (5)
to complete the parallel ordering consensus of BlockLimit
blocks. To ensure the correct sequence of blocks during
the consensus process, each node maintains a vector Vacp,
where each element records the value of the last message’s
counter processed by each replica node (including Prepare,
Commit, Checkpoint, Viewchange). For example, Vacp =
(U Ip1 .h,U Ip2 .h,U Ip3 .h, . . . ,U Ipn .h), where U Ipn .h is

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 9 of 24 0

the counter value of the last message sent by the primary
node received by the current replica node.

4.4 Block pipeline execution process

During the block batch parallel generation process, con-
sensus engine generates BlockLimit deterministic blocks
which are placed into the block queue, denoted as BLQueue
= [Blocki ,Blocki+1, . . . ,Blocki+BlockLimit]. In the pro-
cess, the consensus engine continuously extracts unexecuted
blocks from the block queue for execution, and conducts a
pipeline consensus on the execution results of these blocks.
The protocol for this process is presented as Algorithm 2,
with specific steps as follows:

1. The consensus engine retrieves an unexecuted block,
referred to as Blocki , from the block queue and inputs
it into the execution engine. The state resulting from
executing the block is noted as Checkpoint i , with its
corresponding hash denoted as cPHashi .(See lines 5-8
of Algorithm 2)

2. After block execution, nodes generate a Checkpoint
message packet, denoted as CheckPointMessagei =
〈Checkpoint, S j ,U Ilatest , cPHashi ,U Icj 〉, where
U Ilatest is the signature of the most recently executed
request, cPHashi is the current node state’s hash value,
and U Icj is the signature obtained by calling createUI
on this Checkpoint message. This Checkpoint message
packet is then broadcast to all nodes. (See lines 9-14 of
Algorithm 2)

3. Other nodes receivingCheckPointMessagei verify the
validity of the signature. If the signature passes valida-
tion, the message packet is placed into local cache. (See
lines 17-22 of Algorithm 2)

4. When a node collects f +1Checkpoint message packets
with execution results matching their own and from dis-
tinct consensus nodes, it is considered that all consensus
nodes have reached an agreement on the block execution
result Checkpoint i . The execution result CheckPoint i
is then committed to storage, and the blockchain state
is updated to the latest. At this point, nodes employ the
GarbageCollection (GC)mechanismbased on the check-
point to discard all log entrieswith sequence numbers less
thanU Ilatest . When a view change occurs, a new check-
point is generated, and the log list is cleared. (See lines
23-26 of Algorithm 2)

5. Once Blocki has finished executing, Blocki+1 can exe-
cute based on the state of Blocki , using the hash of
Blocki as its parent block hash. This produces a new
execution result Checkpoint i+1, and the steps above are
repeated to reach consensus on the execution results of
the remaining BlockLimit −1 blocks in the BLQueue.
(See lines 31-33 of Algorithm 2)

Algorithm 2 Block pipeline execution.
1: Input: BlockLimit BL , BLQueue Q, U Ilatest U Il
2: Output: checkPoint set cP
3: upon obtainment of BL < Q > at S j do
4: for i = 1 to BL
5: // Retrieve the next unexecuted block
6: Checkpointi = ExecuteBlock(Q[i])
7: // Calculate the hash for the execution result
8: cPHashi = CalculateHash(Checkpointi)
9: // Create a unique identifier for the block using the latest signa-

ture
10: U Icj = createUI(Q[i])
11: // Generate a Checkpoint message with necessary signatures
12: CheckpointMessagei = CreateCheckpointMessage

(S j ,U Il , cPHashi ,U Icj)
13: // Broadcast the Checkpoint message to all nodes
14: BroadcastCheckpointMessage(CheckpointMessagei)
15: end for
16:
17: upon reception of f + 1 < CheckpointMessage > at S j do
18: if NotReceivedCheckpointMessage(S j ,U Il ,U Icj)
19: // Verify the signature of the received message
20: if VerifyCheckpointMessage(S j ,U Il , cPHashi ,U Icj)
21: // Store the valid message in the local cache
22: AddToLocalCache(CheckpointMessagei)
23: // Commit the execution result once agreement is reached
24: cP := CommitExecutionResult(Checkpointi)
25: // Update blockchain state and trigger garbage collection
26: PerformGarbageCollection(U Ilatest)
27: end if
28: end if
29: end upon
30:
31: // Once Block i finishes execution, proceed to the next block
32: ExecuteNextBlock(Blocki+1)
33: Repeat the above steps for the remaining BlockLimit −1 blocks

in BLQueue.

4.5 View change operation

In the normal operation, the primary node assigns sequence
numbers to the requests it receives and broadcasts these num-
bers to other replica nodes using Prepare messages. Our
protocol significantly limits the malicious actions that the
primary node can perform: it cannot duplicate or arbitrarily
assign higher sequence numbers. However, a malicious pri-
marynode can still prevent consensus operations by either not
assigning sequence numbers to some requests or not assign-
ing sequence numbers to any requests.

A view change must be executed, and a new primary
node chosen when the primary node fails or acts maliciously.
View changes are triggered by timeouts.When a replica node
receives a request from a client, it starts a timer Tsp that times
out after a fixed period. The timer stops when the request is
accepted. If the timer expires, the replica node suspects the
primary node of failure and initiates a view change.

Theviewchangeoperationprotocol is shownasAlgorithm 3.
When the timer of a replica node Sr j times out, Sr j sends a
message 〈ViewchangeReq, Sr j , v, v′〉 to all nodes, where v

123

 0 Page 10 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

Algorithm 3 View change process.
1: Input: currentView v, replica node Sri , new-view certificate Vnv ,

set of requests to be executed NVc, Checkpoint certificate cPlatest
2: Output: newV iew v′
3: upon reception of f + 1 〈V iewchangeReq, Sr j , v, v′〉 messages

at the replica node Sr j do
4: currentV iew := v′
5: multicast 〈V iewchange, Sr j , v’, cPlatest ,M,U Iv〉
6:
7: upon reception of 〈V iewchange, Sr j , v′, cPlatest ,M,U Iv j 〉 at

other replica nodes Sr j do
8: // Sr j check if message is consistent with system state
9: if cPlatest contains f + 1 Checkpoint messages set
10: if U Iv j .h = U Iv j−1.h + 1
11: if M is not null
12: The counter values of the messages in M should be contin-

uous
13: end if
14: end if
15: end if
16:
17: upon reception of f +1 〈V iewchange, Sr j , v’, cPlatest ,M,U Iv j 〉

messages at the new primary node S′
p do

18: S′
p store V iewchange messages in Vnv

19: addToNVc(S′
p , v’, cPlatest ,M,U Iv j)

20: computeNVc(prepared messages P , accepted messages A)
21: multicast 〈newV iew, S′

p, v
′, Vnv, NVc,U In〉

22:
23: upon reception of 〈newV iew, S′

p, v’, Vnv, NVc,U In〉 message at
other replica nodes Sr j do

24: Sr j check if Vnv contains all required requests
25: computeNVc(prepared messages P , accepted messages A)
26: if isSComputedProperly() // Verify if NVc was computed prop-

erly
27: executeRequestsNVc() // Begin the new view
28: else
29: requestMissingCommitCertificates() //Request missing com-

mit certificates to update state
30: end if

is the current view number and v′ = v + 1 is the new view
number.When Sr j receives the other f +1V iewchangeReq
messages, it transitions to view v′ and broadcasts a message
〈Viewchange, Sr j , v′, cPlatest ,M,U Iv j 〉, where cPlatest is
the latest checkpoint certificate (i.e., the collection of those
f + 1 valid Checkpoint messages), and M is the set of
all messages sent by the node since the latest checkpoint was
generated, including: Prepare,Commit ,V iewchange, and
newV iew messages. At this point, the node stops accepting
messages in view v.

The V iewchange messages utilize unique identifiers
U Iv j obtained by calling createU I . The goal is to pre-
vent Byzantine nodes from sending V iewchange messages
with different cPlatest and M to different nodes, leading
to different decisions on the last request of the previous
view. If Byzantine nodes do this, benign nodes can still
detect them by validating U Iv j . Only the normal nodes
that are consistent with the system state will consider the

〈Viewchange, Sr j , v′, cPlatest ,M,U Iv j 〉 message. Normal
nodes perform the following checks on V iewChange:

1. cPlatest actually has f + 1 valid U I identifiers.
2. In U Iv j , U Iv j .h = U Iv j−1.h + 1.

• If M is not empty, then U Iv j−1.h is the highest
counter value in M .

• If M is empty, then U Iv j−1.h is the counter value in
cPlatest .

3. The counter values in messages M are consecutive.

When the new primary node S′
p of view v′ receives

Viewchange messages from f + 1 distinct replica nodes,
it stores them in a collection called Vnv , which is the new
view certificate. Vnv will include all requests made after the
previous checkpoint, including those that are only prepared
but not yet accepted. To define the initial state for the new
view v′, the new primary node uses the information from the
cPlatest and M fields in the Viewchange messages to define
NVc, which is a collection of requests that have been pre-
pared/accepted since the checkpoint. To compute NVc, the
primary node first selects the most recent and valid check-
point certificate received in the Viewchangemessages. Next,
it chooses requests from the M collection that have counter
values greater than those in the latest checkpoint certificate.

After making this calculation, the primary node broad-
casts a message 〈newView, S′

p, v
′, Vnv, NVc,U In〉. When a

replica node receives a newViewmessage, it verifies the valid-
ity of the new view certificate Vnv . All replica nodes also
perform the same calculation as the primary node to verify
that NVc is correctly computed. Replica nodes then start the
set of all requests in the new view v′ that were accepted in
view v, denoted as Sacc. If a replica node detects that the
counter values between its latest executed request and the
first request in NVc are not consecutive, it initiates a Com-
mit check with all other nodes to retrieve missing requests.
If these message requests have been deleted by other nodes
due to the garbage collection mechanism, they use the same
State Transfer mechanism as PBFT to directly transition the
state (without needing to execute requests).

In previous BFT protocols, even when a view change
occurs, the sequence numbers for requests would continue
to be allocated for execution in the order of the previous
view number. However, in TEP-BFT, this is not the case, as
each view’s sequence numbers are provided by the different
node’s SGX-based USIG. Therefore, when a view change
occurs, the first sequence number for the new view must be
defined. The new view v′ starts with the counter value of
U In in the newV iew message plus one. When a node sends
a viewChangemessage, it starts a timer Tnc, which if expires

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 11 of 24 0

before receiving a valid newView message, necessitates an
additional view change. Each time, the timer is multiplied
by two, increasing exponentially until the new primary node
responds. The goal is to avoid perpetual timeouts due to pro-
longed communication delays.

5 Proof of correctness

Our protocol upholds the safety and liveness attributes
inherent to conventional Byzantine Fault Tolerance (BFT)
protocols. Within this context, safety ensures that all benign
nodes process identical requests in a consistent sequence,
whereas liveness guarantees that requests frombenign clients
are invariably executed. The demonstration of the correctness
of TEP-BFT is elaborated upon in this section.

5.1 Safety

Theorem 1 In the same view v, if a benign node executes an
operation op with the identifier U I .h, no other benign node
will execute this operation with a different identifier U I .h′
where U I .h′ �= U I .h.

Proof U I .h is an identifier assigned by the primary node
using the createUI function. If a benign node executed an
operationopwith identifierU I .h, itmust have accepted f +1
validCommitmessages for 〈op,U I .h〉. Let these f +1 nodes
be denoted as Ns .

By proof of contradiction, assume there is another node
S′ that executes operation op with identifier U I .h′ where
U I .h′ > U I .h. According to TEP-BFT, S′ would have
accepted f + 1 valid Commit messages for 〈op,U I .h′〉. Let
these f + 1 nodes be denoted as N ′

s . Since n = 2 f + 1 and
|Ns | + |N ′

s | = 2 f + 2 > n, there must be at least one node
Sl (the intersecting node), that sent Commit messages for
both 〈op,U I .h〉 and 〈op,U I .h′〉. Therefore, it can be con-
cluded that Sl is a Byzantine node. Sl could be the current
primary node Sp or a replica node Sri . We need to consider
the following cases:

1)When Sl is the primary node Sp: Sp generates two UIs
for the same operation op, i.e., U I = 〈U I .h, H(op)〉 and
U I ′ = 〈U I .h′, H(op)〉. At the same time, it is possible that
Byzantine replica nodes also accepted U I and U I ′, sending
Commit messages with 〈U I ,U Ic〉 and 〈U I ′,U I ′

c〉 to some
benign node. Now, the execution of the benign node Sc can
be divided into the following two cases:

• Sc has executedU I .h. At this time, Vseq [Client] =
op.seq. Then Sc will not accept the Commit message
with 〈U I ′,U I ′

c〉, because it contains the same request
as op.seq. Sc will only accept those Commit messages
where op′.seq > Vseq [Client].

• Sc has not executedU I .h yet. Sc must execute all requests
before U I .h′ (gaps between identifiers are not allowed).
Hence, U I .h must be executed before U I .h′.

2)When the primarynode Sp is benignand Sl is a replica
node: Sp will not generate two different U Is for the same
operation op. If Sl sends two differentCommitmessages, i.e.,
〈op,U I .h〉 and 〈op,U I .h′〉, the other benign nodes, upon
validating U I and U I ′ through VerifyUI, will only accept
the Commit message with the identifier U I .h.

To conclude, it is known that a benign node will not exe-
cute the same request operation with different identifiers.

Theorem 2 In view v, if a benign node executes an opera-
tion op with identifier U I .h, then in any view v′ > v, no
other benign nodes will execute this operation with a differ-
ent sequence number U I .h′ where U I .h′ �= U I .h.

Proof Although v′ can be any value, any view v′′ between
v and v′, can be considered as multiple iterations of v′ =
v + 1, regardless of whether any requests were executed in
v′′. Hence, we only need to discuss the casewhere v′ = v+1.

Lemma 2 is also proved by contradiction. If a benign node
Sc in view v executes an operation with identifier U I .h, it
must receive f +1 validCommitmessages for 〈op,U I .h, v〉,
denoted as Ns . Suppose there is another benign node S′

c,
which in view v′ executes the operation op with identifier
U I .h′ where U I .h′ > U I .h. According to the TEP-BFT
protocol, S′

c receives f + 1 valid Commit messages for
〈op,U I .h′, v′〉, denoted as N ′

s . Because n = 2 f + 1 and
|Ns | + |N ′

s | = 2 f + 2 > n, there must be at least one inter-
secting Byzantine node Sl that sent two different Commit
messages, namely 〈op,U I .h, v〉 and 〈op,U I .h′, v′〉.

Firstly, we must prove that the new primary node Sp of
view v′ must acknowledge that op was accepted or exe-
cuted in view v. This is proved through the new view
certificate Vnv , which contains f + 1 Viewchange mes-
sages 〈Viewchange, Si , v′, cPlatest ,M,U Ii 〉, from f + 1
nodes, denoted as N ′′

s , with at least one benign node
Sc among them. The Viewchange message from Sc is
〈Viewchange, Sc, v′, cPlatest ,M,U Ic〉. Also, Byzantine
node Sl would have sent a Viewchangemessage before send-
ing 〈op,U I .h′, v′〉. Now we need to consider the following
two cases:

1) If op was executed after the most recent stable check-
point: op’s Commit message will be included in M of
Viewchange. However, Byzantine Sl may not include op’s
Commit message in M . In this case, we further consider the
following scenarios:

• If Sp is benign: If Sc ∈ N ′′
s executed operation op in

view v, then Sc’s Viewchange message’s M contains the
Commit message for operation op. Hence, through this

123

 0 Page 12 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

Viewchangemessage, Sp can determine that op has been
executed. If Sc did not executeop in viewv, Sl wouldhave
to perform one of two actions detectable by Sp to exclude
op from M : 1) If Sl executed a request op′ after op, Sl
could include op′’s Commit message in M but not op’s,
leaving a gap in M detectable by Sp; 2) If Sl sent a Com-
mit message with 〈U I .h, op〉, it might not include any
Commit messages withU I .h′ > U I .h in M , but Sp will
detect this because Sl must sign the Viewchangemessage
with U I .h′. Therefore, for Sl ’s Viewchange message to
be inserted into Vnv by Sp, Sl must include op’s Commit
message in M .

• If Sp is Byzantine: Sp may attempt to modify the M it
inserts into Vnv . If it merely removes op fromM , it leaves
a gap that is detectable. If it removes op and all subse-
quent messages, this is also detectable because Sp cannot
forge a UI from Sc with a counter value higher than the
later messages. If Sp inserts Sl ’s Viewchange message
into Vnv , however, benign nodeswill verify the validity of
Vnv upon receiving thenewViewmessage from Sp . There-
fore, Byzantine Sp cannot forcibly add Sl ’s Viewchange
message to Vnv .

2) If opwas executed before themost recent stable check-
point: The execution of op is implicit in the certificate of the
most recent stable checkpoint. Byzantine Sl may attempt to
place an older checkpoint in the Viewchangemessage. In this
case, we further consider the following scenarios:

• If Sp is benign: If Sc ∈ N ′′
s executed operation op in view

v, since Sc is benign, Sc’s Viewchangemessage’s cPlatest
already includes the fact that op was executed. Hence,
Sp can determine that op has been executed. At the same
time, Spwill not insert theViewchangemessage sent by Sl
into the new view certificate Vnv , because by comparing
the hash value cPHash and cPlatest of the current node
state in the Viewchange message of Sc and Sl , it will be
found that Sl does not include the execution of op in the
checkpoint. If Sc did not execute op in view v, Sp will
never insert Sl ’s Viewchange message into Vnv , because
Sl must perform one of the detectable actions indicated
in the condition 1)-1.

• If Sp is Byzantine: If Sp attempts to replace cPlatest with
an older checkpoint certificate, it also cannot forge the
UI. Even if it uses an older checkpoint sent by Sc,
this is also detectable. This is because when a benign
node receives a newView message, it checks the valid-
ity of Vnv . Therefore, Byzantine Sp cannot tamper with
the contents of benign nodes’ Viewchange messages. If
Sp inserts Sl ’s Viewchange message into Vnv , however,
benign nodes will verify the validity of Vnv upon receiv-
ing the newViewmessage from Sp. Therefore, Byzantine
Sp cannot forcibly add Sl ’s Viewchange message to Vnv .

Through the above deductions, it is shown that the new
primary node Sp of view v’ must acknowledge that op was
accepted or executed before v’. The following will continue
to prove that benign nodes will not execute op in view v’,
where the sequence number U I .h′ in view v’ is different
from U I .h. Consider the following two cases:

• If Sp is benign: As proved above, Sp can confirm that op
has been executed, hence a benign Sp will not generate
another UI for the same op in view v’ and send a Com-
mit message. Therefore, other benign nodes will also not
execute op in view v’ that has already been done in v.

• If Sp is Byzantine: Sp can create a new Preparemessage

containing U I ′ = 〈U I .h′, H(op)〉 and send it to other
nodes, where benign replica nodes will validate op.seq
and find op.seq ≤ Vseq [Client], meaning the request
has already been executed, thus benign nodes will not
execute it again.

5.2 Liveness

Theorem 3 During a stable view, operations requested by
benign clients will be completed.

Proof Wedefine a stable view as one where the primary node
is benign and there are no timeouts on benign replica nodes. If
the client is benign, it will send operation opwith a sequence
number seq greater than any previously used to all nodes.
Since the primary node Sp is benign in a stable view, it will
generate a U I = 〈U I .h, H(op)〉 and send a Prepare mes-
sagewithU I to all other replica nodes. Benign replica nodes,
after receiving this message, will call verifyUI to validate the
U I and send a Commit message for 〈U I .h, op〉. Since there
are at most f Byzantine nodes in the system, at least f + 1
benign nodes (including Sp and other f replica nodes) will
generate these Commit messages and send them to all oth-
ers. When a benign node receives f + 1 Commit messages,
it will execute op and send a Reply message to the client
Client. Once Client receives f + 1 matching Reply mes-
sages, the operation will be considered complete. Because
there are f + 1 benign nodes, the above will inevitably hap-
pen, and they will work the same as the U I .h-th operation
when executing op.

Theorem 4 If at least f + 1 benign nodes request a view
change, then view v will eventually be changed to a new
view v′ > v.

Proof To request a view change, a benign node Sc sends a
〈ViewchangeReq, Sc, v, v′〉 message to all nodes, where v is
the current view number and v′ = v+1 is the new. Consider
a view change from v to v + 1 requested by a set of f + 1
benign nodes Ns . By definition, the primary node Sp in view
v faces two conditions:

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 13 of 24 0

1. The view is stable: This means that all nodes in Ns

have receivedViewchangeReqmessages from each other.
When one node S receives the f + 1-th ViewchangeReq
message, it sends a 〈Viewchange, S,v′,cPlatest ,M,U Ivs〉
message to all others. All Viewchange messages sent
by nodes in Ns are received by all other nodes. The
primary node S′

p of view v′ is benign, so it sends a
〈newView, S′

p, v
′, Vnv, NVc,U In〉message to all others.

Since the view is stable, all nodes receive the newView
message, and the view changes to v′.

2. The view is unstable: The following two cases should be
taken into consideration:

• Sp is Byzantine, but it does not send a newView message
or sends an invalid newView message discarded by all
benign nodes; or Sp is benign, but communication delays
cause all benign nodes’ timeouts to expire: When nodes
sendViewchangemessages, they start a timer that expires
after a fixed time unit Tnc. In this case, all benign nodes’
timers will expire, and they will initiate another view
change.

• Sp isByzantine, but sends the newViewmessage to at least
f +1 nodes (denoted as N ′

s) amongwhich less than f +1
are benign nodes; or Sp is benign, but communication
delays lead to the same effect: In this case, the Byzantine
nodes in N ′

s can act according to the protocol, making
the benign nodes in N ′

s believe it is running correctly.
The nodes in N ′

s can send Prepare andCommit messages
following the normal operation process. For the benign
nodes not in N ′

s , their timers will expire after a fixed time
unit Tnc, and these benign nodes will send Viewchang-
eReqmessages, but therewill not be f +1 suchmessages,
so no view change will occur. When Byzantine nodes
begin deviating from the normal operation process, the
requests will stop being accepted, and the benign nodes
in N ′

s will send ViewchangeReq messages, initiating the
view change. In both cases, when another view change
begins, the system may fall back into either of the condi-
tions 1) or 2). However, eventually, the view will become
stable, and the system will fall into condition 1), and the
view will change to the new view v′.

Theorem 5 Operations requested by benign clients will
eventually be completed.

Proof This proof is derived from the previous lemmas. In
a stable view, operations requested by benign clients will
eventually be completed (Lemma 3). If view v is unstable, at
the expiration of the timer, there exist two conditions:

1. At least f + 1 benign nodes request a view change: In
this case, the view will change to a new v′ (Lemma 4).

2. Less than f + 1 benign nodes request a view change:
This scenario is similar to the situation in Lemma 4-2)-2.

If there is at least a subset of f + 1 nodes N ′
s that do not

request a view change and continue to operate in view
v, the system will remain in view v, and requests from
benign clients will be executed. If there is no such N ′

s or
requests are not executed within a fixed time, all benign
nodeswill request a view change, leading to condition 1).

Condition 1) will lead to a view change, but the new view
v′ may not be stable. The system model assumes that pro-
cessing and communication delayswill not grow indefinitely,
and in the protocol, the fixed time Tnc doubles each time a
new view change is needed. Therefore, even if view changes
occur consecutively, eventually there will be a view v′′, and
one of the following two scenarios will happen:

• Sp is benign: There are no timeouts expiring on benign
replica nodes because Tnc is greater than the observed
maximum delay. In this case, the view is stable, and oper-
ations are executed through Lemma 3.

• Sp is Byzantine: In this case, Sp can deviate from the nor-
mal operation process leading to timeouts and new view
changes, or follow the normal operation process to avoid
view changes. In any case, the view is not stable, so we
enter the above condition 1) or 2). Eventually, there will
be a view where Sp is benign, because only a minor-
ity of nodes are Byzantine, and the view will eventually
become stable.

6 Performance evaluation

6.1 Experiments setup andmetrics

In this section, we developed an SGX-protected framework
usingGramine and incorporated the proposed TEP-BFT pro-
tocol into the FISCO BCOS blockchain [20]. We used a
web framework built in Golang as the interface to initiate
the FISCO processes, aiding in the setup of the experi-
mental environment. For our experiments, each participating
machine hosted a single TEP-BFT node. Specifically, we
assume that the processor, which initiates the TEE plat-
form, is trustworthy and cannot be tampered with as long
as the CPUmicrocode is up-to-date. We also assume that the
blockchain provides secure and tamper-proof storage for all
transaction data. Therefore, we do not consider security vul-
nerabilities and attacks specific to the TEE or the blockchain.

We established the experiments on physical industrial
servers to emulate real-world conditions,with eachTEP-BFT
replica operating on an independent machine. The TEP-
BFT framework was implemented on a private network. Our
experiments were conducted on CPUs with 4, 8, 16, and
32 cores. The configuration for the 4-core CPU is an Intel®

Celeron® Processor J4125 with 8GB of RAM (4GB allo-
cated as trusted RAM), and Intel SGX enabled. For the 8,

123

 0 Page 14 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

16, and 32-core CPUs, the configuration includes an 8/16/32-
core Intel Xeon (Ice Lake) Platinum 8369B processor with
16/32GB RAM (8/16GB as trusted RAM) and Intel SGX.
The client, operating on an 8-core Intel Xeon (Ice Lake)
Platinum 8369B cloud server with 16GB RAM, simulated
multiple threads sending transaction requests to the TEP-
BFT nodes.

To rigorously evaluate the system’s performance, we
designed multiple experimental scenarios with varying key
performance indicators to assess the following metrics:

• Latency (Average Response Time, ART): This metric
measures the duration fromwhen a client issues a request
to when it receives a response.

• Throughput: This represents the number of requests pro-
cessed per second by the protocol.We determine the peak
throughput under varying numbers of malicious nodes f ,
and examine the associated latency for each Byzantine
Fault Tolerance (BFT) protocol, highlighting the rela-
tionship between throughput and latency.

• Load: Thismetric captures the count of active and queued
processes in the system. Typically, the load should not
surpass the number of CPU cores available; exceeding
this threshold suggests that performance degradation is
imminent, with processes beginning to queue.

• Memory usage. In a trusted execution environment,mem-
ory is divided into secure and non-secure memory areas.
Due to the challenges in directly measuring secure mem-
ory, we infer variations in secure memory by observing
changes in the non-secure, facilitated byGramine’s archi-
tecture.

These indicators guide our experimental design, enabling
a detailed exploration of the interactions between transac-
tion request rate (i.e., queries per second, QPS), throughput,
and latency, as detailed in Table 2. Test Case 1 and Test
Case 2 primarily investigate the impact of different QPS on
blockchain performance and system metrics. Hence, with a
fixed transaction count of 200,000, we control the number of

consensus nodes in the blockchain system to be 5. Tests are
conducted with various QPS, specifically 500, 1000, 1500,
2000, 2500, 5000, 7500, and 10,000. Test Case 3 and Test
Case 4mainly examine the influence of the number of normal
nodes and Byzantine nodes on the performance of the entire
blockchain system. On one hand, they verify the scalability
of the consensus mechanism, and on the other, they confirm
the security and liveness of the consensusmechanism.Mean-
while, the selected QPS for the experiments is the optimal
request rate that the system can withstand. Test Case 5 is
designed to assess the performance impact of introducing
a trusted execution environment while also comparing the
performance advantages of our optimized protocol under the
same conditions. To examine the effect of CPU performance
when using a trusted execution environment, as well as the
usability and scalability of the system, control experiments
for all cases are conducted on physical industrial comput-
ers. Test Case 6 compares the performance of our protocol
with other existing improved BFT protocols under the same
experimental conditions. This comparison aims to evaluate
the performance advantages of our protocol relative to oth-
ers. It should be noted that Zyzzyva [18] was not included in
the experiment due to its reliance on the PBFT view change
process when the primary node makes an error, as discussed
in Section 2.2. This limitation diminishes its effectiveness in
scenarios involving Byzantine node attacks, making it less
suitable for our experimental evaluation.

6.2 HowQPS impacts on latency and throughput

This use case investigates the impact of transaction request
rate (i.e., queries per second, QPS) on throughput (i.e., trans-
actions per second, TPS) and latency (average response time,
ART) across industrial servers equipped with 4/8/16/32-
cores CPU. We firstly tested the latency and throughput of
proposed TEP-BFT method on a 4-core CPU under vari-
ous QPS. Furthermore, the consensus protocol’s latency and
throughput on CPUs with 4/8/16/32-cores are also evaluated

Table 2 Parameter
configuration for each use case

Use Case QPS Number of
Transactions

Number of
Nodes

HowQPS impacts on Latency and Throughput 500, 1000, 1500... 20w 5

How the number of nodes impacts on the
Latency and Throughput

optimal QPS 20w 3,5,7,9

How the number of Byzantine nodes impacts
on the Latency and Throughput

optimal QPS 20w f=0,1,2,3,4

Comparison of consensus performance w/wo
Trusted Execution Environments

500, 1000, 1500... 20w 5

Performance comparison with state-of-the-art
BFTs

500, 1000, 1500... 20w 5

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 15 of 24 0

and campared, employing 10,000 QPS. This assessment was
conducted to ascertain the influence of CPU performance on
protocol efficacy.

Performance evaluation under variousQPS As delineated in
Fig. 3-(a), the initial phase of our investigationwas conducted
within an industrial computing setting, equipped with a 4-
core CPU. All experimental nodes were configured within
the Software Guard Extensions (SGX) secure environment,
thus providing a controlled and secure testing framework.
The study revealed a direct correlation between the trans-
action request rate (QPS) and throughput (TPS), with the
latter peaking at a QPS of 1500. Prior to the optimization
of the Practical Byzantine Fault Tolerance (PBFT) protocol,
the system registered a TPS of approximately 1000 within
the SGX container. Subsequent to the protocol optimiza-
tion, however, the throughput significantly increased to about
1500 TPS, representing a noteworthy 30% enhancement in
performance at the maximum QPS. Moreover, the latency
measurements indicated a general increase as the QPS esca-
lated. Crucially, the optimized protocol exhibited superior
performance by demonstrating lower latency compared to
its pre-optimized counterpart under equivalent QPS condi-
tions. This difference was particularly marked at higher QPS
levels, underscoring the benefits of protocol optimization in
high-demand scenarios.

Performance evaluation under various CPU core counts As
depicted in Fig. 3-(b), there is a discernible correlation betw-
een the augmentation of CPU core count and the enhanced
performance of the consensus protocol.More specifically, the
throughput of the protocol, both pre- and post-optimization,

exhibits a positive trendwith the incremental addition ofCPU
cores, which is concurrently accompanied by a reduction in
latency. Furthermore, the performance of the optimized ver-
sion of the protocol significantly surpasses that of the PBFT
protocol in terms of latency minimization. Particularly, in a
system configuration utilizing a 32-core CPU, the proposed
protocolmanifests a considerable reduction in response time,
amounting to 15,838 milliseconds when contrasted with a
configuration employing a 4-core CPU. This empirical evi-
dence substantiates the hypothesis that an increase in core
count serves to enhance both the efficiency and the respon-
siveness of the protocol.

The experimental outcomes substantiate that an increase
in CPU core count exerts a positive influence on both the
maximum throughput and the reduction in latency within
a Software Guard Extensions (SGX) environment. Specif-
ically, for the enhanced protocol, the maximum throughput
observed on an 8-core CPU exhibited an increase of 280.84%
relative to that on a 4-core CPU, while the throughput
on a 16-core CPU showed an increment of 138.5% com-
pared to the 8-core CPU. Concurrently, the data indicate
that the performance of the proposed consensus protocol
significantly improves as the available hardware resources
are augmented. Hence, this protocol demonstrates robust
scalability and distinct performance advantages. Moreover,
even in environments constrained by hardware resources,
our consensus protocol maintains a substantial performance
superiority over traditional Practical Byzantine Fault Tol-
erance (PBFT) protocols, highlighting its effectiveness and
efficiency in various computational settings.

Fig. 3 The latency and throughput performance comparison of the consensus protocol w/wo optimization. (a) Performance on a 4-core CPUs under
various QPS. (b) Performance on various CPU core counts under 10,000 QPS

123

 0 Page 16 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

6.3 How the number of nodes impacts on the latency
and throughput under the optimal request load

This experiment, employing a 16-core CPU, sought to inves-
tigate the relationship between node count and systemperfor-
mance metrics, namely latency and throughput, under a load
of 10,000 requests. The experimental design included config-
urations of 3, 5, 7, and 9 nodes to evaluate the impact of vary-
ing node counts on system performance. As illustrated in Fig.
4-(a), the results demonstrate a progressive decrease in sys-
tem throughput and a corresponding increase in latency as the
number of nodes escalates. The principal factors contribut-
ing to these trends include network communication overhead,
protocol role switching, andmessage confirmationprocesses.

However, compared to the pre-optimizedPBFT,TEP-BFT
exhibits substantial enhancements in both throughput and
latency, especially at higher node counts.Notably, under such
conditions, TEP-BFT achieves a reduction in response time
by 12,258 milliseconds compared to PBFT. This improve-
ment is primarily attributed to the reduction in the number of
communication phases from three to two and a decrease in
the required number of nodes to tolerate f Byzantine nodes
from 3 f + 1 to 2 f + 1. As a result, while PBFT necessi-
tates 12 f 2+10 f +2 instances of communication, TEP-BFT
requires merely 2 f 2+5 f +2, reflecting a substantial decrease
of 10 f 2+5 f . Thus, as node count increases, the response
time advantage of TEP-BFT becomes increasingly pro-
nounced.

In summary, although an augmentation in node count
introduces additional network communication and protocol
processing overhead, which in turn leads to reduced through-
put and heightened latency, the application of a comprehen-
sive suite of performance optimization strategies can still

markedly enhance system performance. These optimizations
bolster the processing capabilities and response speed of the
system. Furthermore, our protocol demonstrates a signifi-
cant performance superiority compared to the pre-optimized
PBFT, underscoring its efficacy in complex computational
environments.

6.4 How the number of Byzantine nodes impacts
on the latency and throughput under the
optimal request load

In this experiment, utilizing a server equipped with a 16-core
CPU, we explore the impact of the number of Byzan-
tine nodes on system latency and throughput under optimal
request load conditions. Considering the system’s fault toler-
ance limitations, for a system configuration set to 9 nodes, a
maximum of 4 Byzantine nodes are allowed. By simulating
Byzantine behavior-namely simulating faults by halting the
operations of normal nodes-the experiment aims to assess
the impact of different numbers of Byzantine nodes on sys-
tem performance. The experimental results are shown in
Fig. 4-(b). The data indicate that as the number of Byzantine
nodes increases, system throughput decreases while latency
increases. This outcome is expected and reflects the direct
impact of Byzantine nodes’ negative influence on system
performance, primarily including the following two aspects:

Influence of Byzantine nodes The presence of Byzan-
tine nodes introduces increased uncertainty and complexity
within the system, particularly when these nodes occupy piv-
otal roles such as the primary node. The system is compelled
to engage in additional processes to detect and mitigate mali-
cious behaviors, ensuring the uninterrupted operation of the

Fig. 4 The impact of the number of nodes on throughput and latency under a 16-core CPU condition. (a) The number of total nodes when there is
no byzantine nodes, (b) The number of Byzantine nodes

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 17 of 24 0

network. These supplementary activities consume system
resources and diminish processing efficiency.

Performance detriments due to view changes In Byzan-
tine fault-tolerant systems, the view change mechanism is
critical for sustaining system operability when the primary
node is compromised by Byzantine failures. This mechanism
necessitates comprehensive coordination among all nodes,
suspending ongoing transactions until a new primary node is
elected and recognized by the network. Although essential
formaintaining continuity, this process significantly impedes
system performance during the transition.

Despite these challenges, compared to the Practical
Byzantine Fault Tolerance (PBFT) protocol, our protocol
exhibits superior robustness in maintaining system liveness
and security with up to 4 Byzantine nodes. As illustrated in
Fig. 4-(b), while PBFT can only accommodate amaximumof
twoByzantine nodes in a nine-node setup, increasing beyond
this threshold disrupts consensus.Moreover, the communica-
tion overhead during view changes in PBFT is greater than in
ourTEP-BFTprotocol, resulting in prolonged response times
and diminished throughput. Consequently, our approach not
only reduces the node deployment costs but also enhances

scalability and fault tolerance, offering substantial improve-
ments over traditional PBFT systems.

6.5 Consensus performance comparison
w/wo trusted execution environments

This study, conducted using a server with a 16-core CPU,
evaluates the system throughput in both confidential and non-
confidential computing environments. As shown in Fig. 5, it
is evident that in non-confidential environments, the optimal
TPS exceeds 20,000. However, in confidential computing
environments, the optimal TPS is around 8,800. This indi-
cates that using the SGX framework inevitably leads to
a performance decline. Nevertheless, as CPU performance
improves, the throughput in confidential environments grad-
ually increases, and the TPS can surpass 10,000. This
suggests that the performance drop is not solely due to the
CPU but also influenced by the Gramine framework. The
following factors primarily contribute to the observed per-
formance decrease in the confidential environment:

Performance Overhead of the Gramine Framework: The
Gramine framework introduces additional overhead in the

Fig. 5 The performance comparison in confidential and non-confidential environments under 16-core CPU conditions

123

 0 Page 18 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

execution of multi-process applications, particularly affect-
ing system call handling and inter-process communication
(IPC), which significantly degrades performance.

System Call Overhead: In the SGX environment, the lack
of copy-on-write and memory sharing mechanisms necessi-
tates that the Gramine framework emulate traditional Linux
process forking via a more intricate checkpoint and recovery
mechanism. This process involves serializing, encrypting,
and transmitting the entirety of a parent process’s mem-
ory and resources to a child process, which subsequently
receives, decrypts, and integrates it into its own enclavemem-
ory. This method incurs considerably more overhead than
traditional copy-on-write operations.

Inter-Process Communication Overhead: In the Gramine
framework, all IPC operations require transparent encryption
or decryption, typically employingTLS-PSKandAES-GCM
encryptionmethods. The associated encryption overhead fur-
ther contributes to the performance reduction.

Despite these setbacks, the throughput achieved in a
confidential computing environment remains adequate to
meet industry standards, enhanced by improved CPU per-
formance. By integrating the PBFT protocol within a con-
fidential computing framework, we can ensure both the
integrity of node code and the security of the runtime envi-
ronment. Additionally, the Gramine framework’s support
facilitates the porting of applications without necessitating
code reengineering, substantially easing development chal-
lenges. This balance of security and performance offers a
practical approach for deploying confidential computing in
critical applications, such as blockchain technologies.

6.6 Performance comparison with state-of-the-art
BFTs

In this study, we implemented three consensus protocols
based on TEE-, MinBFT [29], CheapBFT [15], and FastBFT
[23]-within our system, according to their respective princi-
ples, and compared their throughput and latency against our
TEP-BFTprotocol.As depicted inFig. 6-(a),with an increase
in QPS, the throughput for each protocol improves; however,
However, compared to other existing protocols, TEP-BFT
shows significant advantages in throughput. Furthermore, as
the QPS increases, its throughput advantage becomes even
more pronounced. Notably, at higher QPS levels, TEP-BFT
demonstrates superior scalability. For example, at a QPS of
7500, TEP-BFT has not yet reached its maximum through-
put, while the throughput of other protocols not only plateaus
but begins to decline at a threshold of 2000 QPS. Regarding
latency, TEP-BFT also maintains a significant advantage. Its
latency curve ascends gradually with an increase in QPS,
whereas the latency of other protocols escalatesmore sharply,
particularly at higher QPS levels. When the QPS exceeds
2000, the other protocols show a clear upward trend in
latency. Conversely, when QPS does not exceed 5000, the
latency of the TEP-BFT protocol remains stable and low,
underscoring its enhanced scalability and performance under
high-load conditions.

As shown in the Fig. 6-(b), with the increase in the
number of Byzantine nodes, the throughput and response
times of all BFT protocols are affected to varying degrees.
However, TEP-BFT demonstrates a significant advantage in
both throughput and response time compared to other BFT

Fig. 6 The performance comparison of various BFT protocols in a confidential environment on a 16-core CPU. (a) QPS; (b) Number of Byzantine
Nodes

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 19 of 24 0

protocols. Notably, the response time advantage of TEP-BFT
becomesmore pronounced as the number of Byzantine nodes
increases. This suggests that the TEP-BFT protocol exhibits
stronger robustness when faced with Byzantine faults and
significantly improves the efficiency of handling Byzantine
nodes.

The primary reason for these experimental results is
related to the design optimizations of TEP-BFT. TEP-BFT
employs a more efficient consensus mechanism, which
allows it to reach consensus faster when there are fewer
Byzantine nodes, resulting in better TPS performance. How-
ever, as the number of Byzantine nodes increases, the
overhead of handlingmore complexByzantine scenarios also
increases, leading to higher response times. In contrast, other
protocols may suffer from a lack of parallel optimizations or
inherent complexity, causing their performance to degrade
more significantly in the presence of Byzantine nodes.

The distinct performance advantage of TEP-BFT is pri-
marily attributed to its parallel processing architecture. By
facilitating parallel operations both among and within con-
sensus threads, TEP-BFT effectively utilizes resources to
increase throughput and decrease latency. This mechanism
enables the protocol to sustain high throughput and low
latency even under significant transaction loads,which is cru-
cial for systems demanding high performance and real-time
responsiveness.

6.7 Discussion

Scalability challenges in large networks TEP-BFT demon-
strates significant scalability improvements compared to
traditional BFT protocols, especially when dealing with
mid-sized networks. However, in extremely large networks,
potential bottlenecks arise, particularly due to the increasing
complexity of inter-node communication. As the network
size grows, maintaining low latency and high throughput
becomes challenging due to the quadratic growth in commu-
nication overhead inherent in BFT protocols. This bottleneck
is partially mitigated by TEP-BFT’s multi-level parallel
processing capabilities, which enable the protocol to han-
dle multiple transactions concurrently. However, beyond a
certain network size, even this parallelism may not fully
compensate for the communication overhead. One possible
solution to this issue is to implement hierarchical or shard-
based architectures, which can reduce the communication
burden on any single node by dividing the network into
smaller, more manageable sub-networks.

Practical implementation challenges While TEP-BFT exc-
els in scenarios requiring high throughput and low latency,
its reliance on specific hardware, such as Intel SGX, poses
practical challenges for deployment in real-world blockchain
systems. The dependency on SGX limits the protocol’s

applicability to environments where this hardware is avail-
able and compatible. Ensuring that the system remains
secure and efficient while handling parallel processes can
be challenging, particularly in systems with less predictable
workloads. To address the practical challenges associated
with TEP-BFT’s dependency on specific hardware like Intel
SGX, we emphasize that the protocol is not limited to Intel
SGX but can be implemented on any device supporting
Trusted Execution Environments (TEEs). This includes, but
is not limited to, platforms such as Arm TrustZone, Trusted
Platform Modules (TPM), and RISC-V Keystone. By utiliz-
ing a range of TEE-supporting hardware, TEP-BFT can be
more flexibly deployed across different environments.

7 Conclusion

In this paper, we introduced TEP-BFT, a novel Byzantine
Fault Tolerance (BFT) protocol leveraging a Trusted Execu-
tion Environment (TEE) based on Intel SGX. By utilizing
a trusted monotonic counter, TEP-BFT simplifies the con-
sensus process to two communication phases (Prepare and
Commit) and reduces the number of required replicas to
2 f + 1 while maintaining the security and liveness of tradi-
tional BFT protocols. Our extensive analysis and evaluation
demonstrated that TEP-BFT significantly reduces latency
and enhances throughput compared to other BFT variants.
Additionally, the protocol exhibits robust scalability, with
slower throughput degradation as network size increases,
making it a strong candidate for blockchain applications
requiring frequent transactions.

For future work, we plan to explore the implementation of
hierarchical or shard-based architectures to further enhance
scalability by reducing the communication burden on indi-
vidual nodes in large networks. Additionally, we will focus
on strengthening the security of TEP-BFT by investigat-
ing its resilience against potential vulnerabilities, such as
side-channel attacks, and integrating support for alternative
TEE platforms like Arm TrustZone and TPM. These efforts
will ensure TEP-BFT’s applicability across diverse hardware
environments and enhance its robustness. Finally, we aim to
develop consensus protocols for blockchain networks with
varying topologies, such as graph structures, to mitigate per-
formance bottlenecks in diverse application scenarios.

Appendix A: Performance evaluation

A.1 HowQPS impacts on CPU andmemory
utilization

This case study evaluates the impact of varying Query Per
Second (QPS) rates on CPU load. A comparative analysis

123

 0 Page 20 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

of CPU core counts was conducted using industrial servers
equipped with 4/8/16/32-core CPU configurations under a
load of 10,000 QPS. The results are as follows:

The impacts on CPUworkload under differentQPS Figure 7-
(a) illustrates that, before protocol optimization, the average
load on the primary node consistently exceeds 4 under all
QPS levels within one minute, indicating prolonged resource
contention and resulting in extended response times.At lower
QPS levels, replica nodesmaintain a loadbelow4, but surpass
this threshold as QPS increases. The CPU load utilization
exceeds 100%, operating beyond capacity and risking system
failure at any moment. Following protocol optimization, the
load across all QPS levels diminishes, particularly at higher
QPS where the optimization significantly alleviates system
pressure. Despite nearing 100% load rate, there is a marked
improvement in performance compared to pre-optimization
conditions.

These observations underscore the positive effect of proto-
col optimization on system performance, particularly under
highQPS conditions. This enhancement reduces the system’s
load ratewithout additional hardware resources, thereby aug-
menting the system’s capability to manage high volumes of
concurrent requests. The achievements in improving system
throughput and ensuring stability and responsiveness under-
score the success of our optimization strategy in enhancing
resource utilization efficiency and system robustness.

The impacts on CPU workload under different CPU core
counts As depicted in Fig. 7-(b), data indicate that with an
increasing number of CPU cores, average CPU utilization
rates for the unoptimizedPBFTprotocol are consistently high
across smaller core counts but decrease with larger config-
urations: 100%, 100%, 49.7%, and 33.7% respectively. In
contrast, the TEP-BFT protocol demonstrates lower average

CPU utilizations of 99.6%, 93.1%, 44%, and 28.9% respec-
tively. These figures reveal that an increase inCPUcore count
effectively reduces CPU utilization and enhances protocol
performance, with TEP-BFT consistently showing lower
CPU utilization across various core configurations.

Based on these experimental results, it is evident that
in an SGX environment, the consensus efficiency of nodes
is profoundly influenced by the CPU performance. Experi-
ments on 4-core CPU demonstrate significant system strain
under all measured metrics-TPS, system latency, and sys-
tem load. With enhancements in CPU performance moving
from 4-core to 8-core and then to 16-core CPU, as illus-
trated in Fig. 7-(a) and (b), the system’s TPS continuously
improves while the system load rate declines, indicating an
enhanced capacity tomanage trusted and untrusted areames-
sages under high pressure. Notably, under similar conditions,
TEP-BFT exhibits significant performance improvements
compared to traditional PBFT, achieving efficient consensus
even on less capable hardware.

The impacts onmemory under different CPU core counts The
experimental setup involved configuring Gramine to allocate
8GB of memory to each trusted container, analyzing system
memory usage and its potential impact on performance under
different CPU core counts. The results are as follows:

Memory usage Figure 8-(a) shows that as QPS increases,
operating system memory usage rises while user memory
remains stable, a phenomenon observed in 8-core and 16-
core CPU configurations (Figs. 8-(b) and (c)). This indicates
that higher QPS affects the utilization of trusted memory
under the same Gramine settings. However, compared to

Fig. 7 The CPUworkload performance comparison of the consensus protocol w/wo optimization. (a) Performance on a 4-core CPUs under various
QPS. (b) Performance on various CPU core counts under 10,000 QPS

123

Peer-to-Peer Networking and Applications (2025) 18:0 Page 21 of 24 0

Fig. 8 The comparison of operating system memory usage under (a) 4-Core CPU, (b) 8-Core CPU, and (c) 16-Core CPU

123

 0 Page 22 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

CPUs, the direct impact of trusted memory on performance
appears more limited.

Enclave memory overhead In the SGX protected execution
environment (Enclave), memory overhead is relatively small,
primarily encompassing code, data, and heap. While direct
observations of trusted memory changes are not feasible,
analysis of user space memory and operating system mem-
ory variations can infer the impact of trusted memory. SGX
has minimal effect on user space memory, but kernel space
memory increases with QPS.

In conclusion, although Enclave memory usage is rela-
tively small in an SGXenvironment, an increase inQPS leads
to higher operating system memory usage. This indirectly
indicates that the utilization rate of trusted memory is influ-
encedbyQPS, although its direct impact onperformancemay
not be substantial. Additionally, the rise in Enclave memory
overhead is mainly due to the complexity of code, the vol-
ume of data structures and buffers required, and the storage
of security-related information. Thus, optimizing code and
data management within the Enclave, along with appropriate
Gramine configuration settings, is essential for controlling
memory usage and enhancing system performance.

Funding This work is supported in part by Shandong Provincial Nat-
ural Science Foundation under Grant ZR2022LZH013, in part by the
NationalKeyResearch andDevelopment ProgramofChina underGrant
2021YFB3702403, in part by the National Natural Science Foundation
of China under Grant 62101029, and in part by the China Scholarship
Council Award under Grant 202006465043 and 202306460078. Cheng
Xu and Fuqiang Ma are both corresponding authors.

Data Availability No datasets were generated or analysed during the
current study.

Code Availability Our code is made public available at: https://github.
com/SICC-Group/TEP-BFT.git.

Declarations

Consent to publish All authors approved the final manuscript and the
submission to this journal.

Ethics Approval Not applicable.

Competing Interests The authors declare no competing interests.

References

1. (2024) FISCO BCOS. http://fisco-bcos.org/zh/, accessed: April
2024

2. Castro M, Liskov B (2002) Practical byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems
(TOCS) 20(4):398–461

3. CastroM, LiskovB, et al (1999) Practical byzantine fault tolerance.
In: OsDI, pp 173–186

4. Chun BG, Maniatis P, Shenker S et al (2007) Attested append-only
memory: Making adversaries stick to their word. ACM SIGOPS
Operating Systems Review 41(6):189–204

5. Correia M, Neves NF, Lung LC et al (2005) Low complexity
byzantine-resilient consensus. Distrib Comput 17(3):237–249

6. Distler T, Kapitza R (2011) Increasing performance in byzantine
fault-tolerant systemswith on-demand replica consistency. In: Pro-
ceedings of the sixth conference on Computer systems, pp 91–106

7. Distler T, Cachin C, Kapitza R (2016) Resource-efficient byzantine
fault tolerance. IEEE Trans Comput 65(9):2807–2819

8. Ekberg JE, Kostiainen K, Asokan N (2014) The untapped poten-
tial of trusted execution environments on mobile devices. IEEE
Security & Privacy

9. GarciaM, Bessani A, Gashi I, et al (2011) Os diversity for intrusion
tolerance: Myth or reality? In: 2011 IEEE/IFIP 41st International
Conference on Dependable Systems &Networks (DSN), IEEE, pp
383–394

10. Gervais A, Karame GO, Wüst K, et al (2016) On the security and
performance of proof of work blockchains. In: Proceedings of the
2016 ACMSIGSAC conference on computer and communications
security, pp 3–16

11. Hyperledger (2024) Hyperledger Fabric. https://www.hyperledger.
org/projects/fabric, accessed: April 2024

12. Intel (2023) Intel® Software Guard Extensions (SGX) Program-
ming Reference. Tech. rep., Intel Corporation, accessed: [insert
date here]

13. Javaid M, Haleem A, Singh RP, et al (2021) Blockchain tech-
nology applications for industry 4.0: A literature-based review.
Blockchain: Research and Applications 2(4):100027

14. Kapengut E, Mizrach B (2023) An event study of the ethereum
transition to proof-of-stake. Commodities 2(2):96–110

15. Kapitza R, Behl J, Cachin C, et al (2012) Cheapbft: Resource-
efficient byzantine fault tolerance. In: Proceedings of the 7th ACM
european conference on Computer Systems, pp 295–308

16. Kim Thomas (2017) On the transaction cost of Bitcoin. Finance
Res Lett 23:300–305

17. Kotla R, Dahlin M (2004) High throughput byzantine fault tol-
erance. In: International Conference on Dependable Systems and
Networks, 2004, IEEE, pp 575–584

18. Kotla R, Alvisi L, Dahlin M et al (2010) Zyzzyva: Speculative
byzantine fault tolerance.ACMTransactions onComputer Systems
(TOCS) 27(4):1–39

19. Levin D, Douceur JR, Lorch JR, et al (2009) Trinc: Small trusted
hardware for large distributed systems. In: NSDI, pp 1–14

20. Li H, Chen Y, Shi X, et al (2023) Fisco-bcos: An enterprise-grade
permissioned blockchain system with high-performance. In: Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp 1–17

21. Li T, Wang H, He D et al (2022) Blockchain-based privacy-
preserving and rewarding private data sharing for iot. IEEE Internet
Things J 9(16):15138–15149

22. Li Y, Qiao L, Lv Z (2021) An optimized byzantine fault tolerance
algorithm for consortiumblockchain. Peer-to-PeerNetworking and
Applications 14:2826–2839

23. Liu J, Li W, Karame GO et al (2018) Scalable byzantine con-
sensus via hardware-assisted secret sharing. IEEE Trans Comput
68(1):139–151

24. Martin JP, Alvisi L (2006) Fast byzantine consensus. IEEE Trans
Dependable Secure Comput 3(3):202–215

25. McKeen F, Alexandrovich I, Berenzon A, et al (2013) Innovative
instructions and software model for isolated execution. In: HASP

26. Miller A, Xia Y, Croman K, et al (2016) The honey badger of bft
protocols. In: Proceedings of the 2016 ACM SIGSAC Conference

123

https://github.com/SICC-Group/TEP-BFT.git
https://github.com/SICC-Group/TEP-BFT.git
http://fisco-bcos.org/zh/
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric

Peer-to-Peer Networking and Applications (2025) 18:0 Page 23 of 24 0

on Computer and Communications Security, ACM, Vienna, Aus-
tria, pp 31–42

27. Obelheiro RR, Bessani AN, Lung LC, et al (2006) How practical
are intrusion-tolerant distributed systems? Technical Report

28. Veronese GS, Correia M, Bessani AN et al (2010) Ebawa: Effi-
cient byzantine agreement for wide-area networks. 2010 IEEE 12th
International Symposium on High Assurance Systems Engineer-
ing. IEEE, San Jose, CA, USA, pp 10–19

29. Veronese GS, Correia M, Bessani AN et al (2011) Efficient byzan-
tine fault-tolerance. IEEE Trans Comput 62(1):16–30

30. Vukolić M (2016) The quest for scalable blockchain fabric: Proof-
of-work vs. bft replication. In:OpenProblems inNetworkSecurity:
IFIP WG 11.4 International Workshop, iNetSec 2015, Zurich,
Switzerland, October 29, 2015, Revised Selected Papers, Springer,
pp 112–125

31. Xu J, Wang C, Jia X (2023) A survey of blockchain consensus
protocols. ACM Comput Surv 55(13s):1–35

32. Yao W, Ye J, Murimi R, et al (2021) A survey on consortium
blockchain consensus mechanisms.arXiv:210212058

33. Yin M, Malkhi D, Reiter MK, et al (2019) Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019
ACMSymposiumonPrinciples ofDistributedComputing, pp 347–
356

34. Yu K, Tan L, Aloqaily M et al (2021) Blockchain-enhanced data
sharing with traceable and direct revocation in iiot. IEEE Trans
Industr Inf 17(11):7669–7678

35. Zhang C, Wu C, Wang X (2020) Overview of blockchain con-
sensus mechanism. In: Proceedings of the 2020 2nd International
Conference on Big Data Engineering, ACM, Shanghai, China, pp
7–12

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Ran Wang received the B.E.
degree from the Beijing Infor-
mation Science and Technology
University, China in 2013, and
the M.S. degree from the Univer-
sity of Science and Technology
Beijing (USTB), China in 2016.
She is currently working toward
the Doctoral degree at Univer-
sity of Science and Technology
Beijing. Her research interests
include quantum optimization,
distributed security and internet

of things.

Fuqiang Ma received the B.E. and
Ph.D. degree from the University
of Science and Technology Bei-
jing (USTB), China in 2015 and
2010 respectively. He is currently
working as a security researcher
at Inspur Electronic Information
Industry Co. Ltd and Jinan Inspur
Data Technology Co., Ltd. His
research interests now include
information security, confidential
computing and operating system.
He is a member of the IEEE.

Sisui Tang is currently pursu-
ing the master’s degree with the
University of Science and Tech-
nology Beijing, Beijing, China.
Her research interests include dis-
tributed security, patter recogni-
tion, and Internet of Things.

Hangning Zhang is currently pur-
suing the master’s degree with the
University of Science and Tech-
nology Beijing, Beijing, China.
Her research interests include dis-
tributed security, patter recogni-
tion, and Internet of Things.

Jie He received B.E. and Ph.D
degree in computer science from
University of Science and Tech-
nology Beijing (USTB), China
in 2005 and 2012, respectively.
Since July 2015, he has been
an associate professor with the
School of Computer and Com-
munication Engineering, USTB
since 2015. From April 2011
to April 2012, he was a visit-
ing Ph.D student in Center for
Wireless Information Network
Studies, Worcester Polytechnic
Institute. His research interests

include wireless indoor positioning, human gesture recognition and
motion capture.

123

 0 Page 24 of 24 Peer-to-Peer Networking and Applications (2025) 18:0

Zhiyuan Su received the B.E. and
Ph.D. degree from the Dalian
University of Technology (DUT),
China in 2008, and 2014 respec-
tively. He is currently working
as an operating system architect
at Inspur Electronic Information
Industry Co. Ltd. His research
interests now include information
security and operating system.

Xiaotong Zhang received the
M.S., and Ph.D. degrees from
University of Science and Tech-
nology Beijing, in 1997, and
2000, respectively. He was a
Professor in the Department of
Computer Science and Technol-
ogy, University of Science and
Technology Beijing. His research
includes work in quality of wire-
less channels and networks,
wireless sensor networks, net-
works management, cross-layer
design and resource allocation of
broadband and wireless network,

signal processing of communication and computer architecture.

Cheng Xu received the B.E.,
M.S. and Ph.D. degree from the
University of Science and Tech-
nology Beijing (USTB), China
in 2012, 2015 and 2019 respec-
tively. He is currently working
as an associate professor in the
Data and Cyber-Physical System
Lab (DCPS) at University of Sci-
ence and Technology Beijing. He
is supported by the Post-doctoral
Innovative Talent Support Pro-
gram from Chinese government
in 2019. He is an associate editor
of International Journal of Wire-

less Information Networks. His research interests now include swarm
intelligence, multi-robots network, wireless localization and internet
of things. He is a member of the IEEE.

Authors and Affiliations

Ran Wang1,5 · Fuqiang Ma2,3,4 · Sisui Tang1 · Hangning Zhang1 · Jie He1 · Zhiyuan Su4 ·
Xiaotong Zhang1 · Cheng Xu1,6

B Fuqiang Ma
mafuqiang@ieisystem.com

B Cheng Xu
xucheng@ustb.edu.cn

Ran Wang
wangran423@foxmail.com

Sisui Tang
tangsisui@163.com

Hangning Zhang
hangning0117@163.com

Jie He
hejie@ustb.edu.cn

Zhiyuan Su
suzhiyuan@ieisystem.com

Xiaotong Zhang
zxt@ies.ustb.edu.cn

1 School of Computer and Communication Engineering,
University of Science and Technology Beijing, 100083
Beijing, China

2 Jinan Inspur Data Technology Co., Ltd., 250101 Jinan
Shandong, China

3 State Key Laboratory of High-end Server & Storage
Technology, 100085 Beijing, China

4 Inspur Electronic Information Industry Co. Ltd., 250101 Jinan
Shandong, China

5 College of Computing and Data Science, Nanyang
Technological University, 639798 Singapore, Singapore

6 School of Electrical and Electronic Engineering, Nanyang
Technological University, 639798 Singapore, Singapore

123

	Parallel Byzantine fault tolerance consensus based on trusted execution environments
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Byzantine consensus
	2.2 Enhancing Byzantine fault tolerance

	3 System framework*-2.5pt
	4 TEP-BFT protocol
	4.1 The SGX-USIG
	4.2 Client request process
	4.3 Batch block parallel generation process
	4.4 Block pipeline execution process
	4.5 View change operation

	5 Proof of correctness
	5.1 Safety
	5.2 Liveness

	6 Performance evaluation
	6.1 Experiments setup and metrics
	6.2 How QPS impacts on latency and throughput
	6.3 How the number of nodes impacts on the latency and throughput under the optimal request load
	6.4 How the number of Byzantine nodes impacts on the latency and throughput under the optimal request load
	6.5 Consensus performance comparison w/wo trusted execution environments
	6.6 Performance comparison with state-of-the-art BFTs
	6.7 Discussion

	7 Conclusion
	Appendix A: Performance evaluation*-2.5pt
	A.1 How QPS impacts on CPU and memory utilization*-2.5pt

	References

